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1. INTRODUCTION

As an analytical and small-scale preparative technique (i.e., at the milligram
to microgram level), electrophoresis has acquired a prominent status among modem
physico-chemical separation methods on account of its versatility, ease of implemen-
tation and, most importantly, its extremely high resolving power. Since the adaptation
by Tiselius! in 1937 of the moving-boundary method for the fractionation and
analysis of complex protein mixtures, progress has accelerated rapidly. Numerous
applications to chemical, biological, biochemical and medical systems have led to a
significant number of imporiant discoveries and to the synthesis of other electro-
phoretic apparatus with improved resolving capacity and operating characteristics?+3.

As a large-scale preparative technique, on the other hand, electrophoresis has
not achieved the same degree of success. Because of the high non-linear interactions
among the governing mass, charge, momentum and energy transport processes,
straightforward scale-up procedures are not efiective or may be completely in-
applicable. The main difficulty stems from the Joule heating mechanism, which is in-
herently present in any system through which an electric current is conducted. As
the physical dimensions of the apparatus are increased, it becomes increasingly

* A presentation based on this manuscript was given at the Fundamental Aspects of Electro-
kinetic Phenomena section of the 71st Annual ALCh.E. Mesting held in Miami, Fla., U.S.A., on
November 12-16th, 1978.
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difficult to remove this interrslly dissipated energy, which generally varies pro-
portionally to the square of e local electric ficld strength or, equivaleatly, to the
square of the current. An attempt to reduce the Joule Leat effect, then, wounld neces-
sarily have to emanate from cither an increase in the cooling capacity of the system
(which has the disadvantages of spatially varying temperature distributions and
enlianced instrumentation complexity) or from a reduction in the cusrent or field
strength. Buffer systems of the appropriate ionic strength may be selected in order
to accomplish the lattgr. However, it is evident that this is in direct contrast to the
requirements of rapid and high-resolution separations. The optimization criteria
are consequently apparent: maximize the Joule heat dispersion and transfer with the
system’s surroundings, minimize the thermal convection currents and maximize the
electric field strength in order to achieve rapid fractionations with the best possible
resolution.

It must be further pointed out, however, that even with the attainment of a
successful sclution to this optimization problem, other significant practical difficulties
remain. An example is the recovery of fractionated components of mixtures in poly-
acrylamide gel electrophoresis.

In this review, previously reported investigations are summarized, and -the
fundamental mass, momentum and encrgy transport relationships applicable to
multi-component flowing mixtures are presentied. These relationships are subsequenily
limited to macromolecular mixtures with non-interacting components and, on
dimensionally analysing the resulting equations, two dimensionless parameters are
found, one of which is associated with the mass transport mechanism (£,) and the
other with the thermal energy dissipation mechanism (Je).

2. ANALYSIS OF PREVIOUS INVESTIGATIONS

The combined effect of the various transport processes present in electro-
phoretic fractionation systems are considered from two standpoints: one at the
single particle or microscopic level, where the primary objective is to determine the
interactions among the uniformly applied electrostatic field, the composition of the
electrolytic solution, the structure of the electricai double layer and the induced
electrophoretic mobility, and the other at the macroscopic level where guantitative
expressions are sought for the concentration distributions of the macromeolecular
mixture components and the associated velocity, temperature and electrical potential
distribution.

The behavior of single isolated particles has been studied extensively.
Smoluchowski*5 at the turn of the century, derived an expression for the electro-
phoretic mobility of a non-conducting particle with a small double layer thickness when
compared with the particle’s radius of curvature throughout its surface. A decade
later, Hiickel*-S obtained a similar expression applicable to small spherical particles
for which the ratio of radius of curvature to double layer thickness is small, and the
frictional resistance on the particle by the medium is given by Stokes’ law. Sub-
sequently, Henry™-8, Booth?-® and Overbeck and co-workers™!® generalized the above
theories by incorporating into the analysis the four principal forces believed to be
acting on a particle in a stationary state of electrophoretic motion. These included
the force exerted by the electrostatic field on the charge of the particle, the Stokes’
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frictional - resistance, z retardation force due to the influence of the electrostatic
field -on the ions in- the diffuse double layer and a-relaxation force which attempts
to restore the original symmetrical configuration of the electrical double layer. The
specific form of the electrophoretic mobility relationships obtained by these in-
vestigators are given in 2 later section. Other extensions to non-spherical particles and
to systems with intra-particie interactions are also available'*~'* and can be consulted
for further details on the diversity and complexity of the phenomena.

. At the macroscopic level, many investigations have been coanducted to
elucidate the importance of the various factors that affect electrophoretic separations,
including buffer composition, ionic strength, pH, temperature, electric field intensity,
fractionation time and zone stability. Analytical studies addressed to quantitative
descriptions of such factors, however, have been scarce and mostly confined to
isothermal systems with constant physical parameters and mobilities. Cann and
Goad!* considered mass transport in non-reacting and reversibly reacting systems
under isothermal conditions and constant electrostatic field strength. Typically, they
stipulated that the components of the macromolecular mixture interact either
through acid-base dissociative reactions of the type

PH,=PH,_, - H*
or through associative reactions of the form
P + iHA = P(HA);

with each species possessing a characteristic net charge, electrophoretic mobility and
diffusion coefficient. Integrating these chemical reactions with diffusion and electro-
migration processes, they derived mass conservation coaditions as

ac, @ [, 9Cy _ @EC) |
ot ox (D‘ ax) ox RIRL @

which they solved analytically or numerically to arrive at the electrophoretic patterns.
Following a similar procedure for isotachophoresis, Coxon and Binder'® also con-
sidered systems modeled by the above differentiai relationship. The chemical reaction
terms were absent from their analysis, however, and the appiied electric force
followed Poisson’s equation:

V'E=—GZ—Z'C¢

More recently, Ries ez al.'® extended the work of Philpot'” and described
quantitatively the combined effects of diffusion, convection and electromigration
under isothermai conditions and constant transport properties, including electro-
phoretic mobilities. The bulk velocity profile in the planar, forced-flow electro-
phoretic system was taken as parabolic with diffusion in all three coordinate direc-
tions, i.e., the transient distribution of the mixture constituents was stated as

aC, , C;
axz | 9y

aCi f aCi aC, _ D(
— T — &

ot TVax " Pz

=

+ @



with the appropriate boundary and initial conditions. This model was recognized by
the authors as the slit-flow- analog of the classical Taylor- dispersion problem!®,
Their analytical solation reflected- quanutauvely a significantly large Taylor dispersion
dependesce, and qualitatively a decrease in fractionation efficiency:with.increasing
electromigration velocities and Peclet numinbers. Other investigations addressed to
isothermal systems described by convective-diffusion differential relationships of the
above type include those by Weiss and Rodbard!® (pore gradient electrophoresis},
Lee and Lightfoot*® and Krishnamurthy and Subramanian® (field-fow fractiona-
tion), and Ries and Lightfoot?2 and Lee ef ¢/.2® (ultrafiltration and electrophoresis).

Quantitative studies of temperature distributions within electrophoretic. cells
have beea confined to one-dimensicnal conductive systems with no convective energy
transport and constant density, specific heat and thermal conductivity:

aaI;E = kg Ve Tz + @e(Te)0=Coe (electrolytic solution)
a7,
57~ = % Ver T (cell wall)

Martin and Everaerts?*, with negligible cell wall effects, analysed the parabolic distri-
butions which arise under additional constraints of constant electrical conductivity
and uniform wall temperature. Coxon and Binder?s, Hinckley?® and Brown and
Hinckley?? treated cells of both circular and rectangular cross-section under transient
and stationary conditions. The energy source was held constant and the electrical
conductivity was taken to vary linearly with cell temperature, ie.,

Oc(Te) = E*a2(1 + aTp)
3. FUNDAMENTAL TRANSPORT RELATIONSHIPS

The application of the fundamental principles of mass, momeatum and energy
conservation to 2 flowing mixture, either via the arbitrary coatrol volume approach
or the more classical theory?®-?°, gives rise to the following contiruity, motion and
energy equations, respectively:

Overall continuity:

2 ety M =0 ®

Comnonent continuity:

11))9; = — - Jjt — ey - V) + re (i = fluid mixture components) @
Motion:

) Dy
e =_W_V'7+Qg+ztelﬁi . : (&)

Dt
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Energy:

DU .
e 5= *V’q—(PI+T)/VV+:tJt'Fz

For purposes of thermal systems analysis, the last expression can be more
conveniently rewritten as

DT
eC, =—v-q—@I[+D/yw+oéy-v+

Dt
+ Zx[(V < Jj) + rid [U_a/Me + 5—;71/1‘{:] + 2 - Fz ©
with
8 = p — T (9p/aT)

Following Hirschfelder er al.28, the mass flux of the individual species can be broken
down into a2 coatribution due to the concentration {ordinary diffusion), temperature
(thermal diffusivity, the Soret effect) and pressure (pressure diffusion) gradients
present locally within the fluid mixture, and a contribution due to the externally
applied forces (forced diffusion):

j[ = ji(g) + jg(F) - jl(c) + j‘(‘l‘) “i‘ jl(p). + jt(n (7)

Similarly, the thermal dnergy flux can be broken down into contributions emanating
from ordinary thermal conduction and energy transport due to concentration
gradients (the Dufour effect), molecular diffusion and radiation:

qg= q(T) + q(c) <+ q(d) -+ q(r) (8)

The last term in eqn. 5 represents the momentum imparted on the fluid mixture due
to the influence of the externally applied forces, and the last term in eqn. 6 corresponds
to the work done (energy dissipated) by the migrating molecules in overcoming the
external forces.

4. ELECTROPHORETIC TRANSPORT RELATIONSHIPS FOR NON-INTERACTING
MACROMOLECULAR MIXTURES

General expressions for the mass and energy flux components included in
eqns. 7 and 8 have been obtained by Hirschfelder er al.?® through the thermodynamics
of irreversible processes and the Onsager reciprocal relations approach. Of such
fluxes, specifically as related to electrophoretic systems, mass fluxes resulting from
temperature and pressure diffusion mechanisms, and also energy fluxes resulting from
concentration, molecular diffusion and radiation mechanisms, are neglected. Conse-
quently, as a function of the corresponding transport cocfiicients, the following
expressions hold:
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Ordinary diffusion:

= |
. c? 2G,
j,“) — QTT— JZ'MleDi.i{x, ?:( !)lg

Forced diffusion:

= — _ng—T : ZMIMJDU [XJMJ(FJ — 25 Fz)]
J E T

Heat conduction:

qP = —kvT

In this form these expressions are rather unmanageable, as the partial molal
Gibbs free energies are temperature, pressure and composition dependent, and the
transport coefficients, D, ;, are multi-component diffusion parameters whose values are
difficult to obtain cither theoretically or experimentally. Note that in addition,
generally Dy; 7 D, for other than binary systems.

To arrive at a quantitatively suitable set of transport eguations, it will be
assumed that the interactions along the macromolecular mixture constituents are
negligible and that, consequently, the mixture behaves ideally. For each constituent,
then, the combined binary form of the concentration and forced diffusion flux is

D,C
Jp=—D;vC; + = ; ©)
RT -

Also, if viscous dissipation mechanisms and pressure variations are insignificant,
eqgn. 6 may be transformed into

DT 77
chﬁ =v - kvD + Ui+ 2 J; - F (10

The functionality between the externally applied electric forces and the net
migration imparted on the individual components of the electrolytic solution must
now be establisied. Pertaining to the ionic species, they may be viewed as point
charges and, consequently,

F; = z; F(—v9P)

Pertaining to the charged miacromolecular components, on the other hand, the
resultant force is directly dependent on the character of the particles’ double layer and
on the magnitude of the zeta potential. In its simplest form, assuming the presence of
single, rigid and non-conducting particles with uniform dielectric constants and
solution viscosity coefficients®1°, the zeta potential can be expressed as

o o

ea T Ha L 179

=
3
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For large ratios of radius of curvature to diffuse double layer thickness (4a),

£ =(@3/2)0/ca

and, on equating the electrical and viscous forces affecting the particle, Smolu-
chowski’s equation is obtained for the particle electrophoretic mobility:

v = [sfbzp
For small ratios of the radius of curvature to the diffuse double layer thickness,
§ = Qlea

Similarly, if only forces of electrical and frictional origin are accounted for, Hiickel’s
equation derives:

v = Lef6p

Incorporating surface conductivity distributions, solvent retardation effects and
diffuse double layer asymmetries into the analysis, Henry®, Booth® and Overbeek and
co-workers™!® derived generally fiexible zeta potential relationships of the form

_e
¢ == faa)

and for the electrophoretic mobility

Le

= f(42)

Py =

where both araiytical and graphical representations of f(42) for Henry’s equation
(relaxation effects not included and 2a small or large) and the more general case can

be found in the references cited.
Generally then, the force exerted on the components of the electrolytic

medium will be
z,F( — vD) ionic species

fi= {[Ceaf().a)],ﬁ( — v®) charged pariicles or macromolecules

= 7(—v9P)

-Conseque_:ntly, the component continuity and energy equations result in

DC, D,Cy
L=V (DO + v (Fr Ve —Cv M+ 1 an
DT ) 2
eC, Dr=V" (kyT) + Zl(Dﬂ’ivql)V@ + (21D, Cyi/RT) 12)

(V@ ° V@) + Zii—]lrt
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In addition to mass, momentum and energy coaservation, electrophoretic
systems must also uphold the electrical charge conservation principle. To arrive at an
expression for such a principle, eqn. 11 is formally multiplied by the met particle
charge, ¥;, and upon summing over all mixture components we obtain

2, C,
’a(_lal;“‘—) =y * (Z:DyyvC)

+V- [(ZtDiCt}'ilRT)w} —v - Cyly)=v- - CyN)=vy-i
(13)

where all chemical reactions have been assumed to be electrically balanced. If the
medium is said to be electrically neutral, i.e.,

ZiyC:=0 (14)

then, after some rearrangement, eqn. 13 vields an expression for the electrical
potential:

2V EiPywvC) + [V(E.D.Ci/RT)] - P
ve= =.D,C3RT as)

The following observations can be made:

(i) For the analysis of electrochemical systems composed of ionic species only,
the component continuity expression {eqn. 11) reduces to the commonly encountered
multi-component diffusion equation®, for which the distribution of migrating species
in dilute solutions is expressed as

ac
-a—t-‘ +v-yCi=vy - (DvC) + v - @Ciz:FyP) +r,

where the fluid mixture is assumed to be incompressible and use is made of the
Nernsi—Einstein relationship:

u; = Di/RT

(ii) The second and third terms in egn. 12 constitute contributions due to Joule
keating. Under more familiar circumstances of uniform compositions and no thermal
energy exchange due to chemical reactions, this energy transport equation is simplified
to give

DT i-1i
eCopp =V kv + 3.D,C7RT

Ner——— et
Joule heating
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(ii1) The charge density movement and the flowing current density induce
eleciric and magnetic fields which, according to Maxwell’s equations, follow

F v .
3 +i=yXB

D = v E = (1/g) 233,C,

&

If the characteristic time constants for the system are such that the electrical
processes respond significantly more quickly to temporal variations relative to the
co-existing mass, momentum and thermal energy processes, then a pseudc-steady-
state approximation with respect to @, indicates

(X y.C: .
( za?t': )=V"=V'(VXB)=O

Consequently, this procedure in general is not equivalent to invoking the electro-
neutrality condition as expressed by eqn. 14. In isotachophoresis with no convective
currents present, this indeed holds true, as indicated by Moore®!.

(iv) It is frequently stated®® that the electroneutrality assumption doss not
imply Laplace’s equation for the electrical potential. This is evident from eqgn. 15,
which for isothermal and uniform composition systems reduces to

voe=0
5. DIMENSIONAL ANALYSIS OF ELECTROPHORETIC TRANSPORT EQUATIONS

For purposes of reducing the total number of relevant dimensional system
parameters to independent subsets of dimensionless groups, the electrophoretic trans-
port egns. 3, 5, 11, 12 and 15 will now be simplified (to reflect the predominant
processes taking place in homogeneous and heterogeneous and in continuous and
discontinuous electrophoretic systems) and cast in dimensionless form.

5.1. Convective electrophoretic systems

Forced-flow and continuous zone electrophoretic apparatus operate under
incompressible flow conditions and with electrolytic fluid mixtures of constant
viscosity. If electroosmotic effects are considered not to influence the development of
the convective flow field, then, in dimensionless form, the governing transport
relationships include the following:

Overall contiauity:

vv=0

Motion:

—aa—‘t’——l— @ -—v)v= — P —(;é;)v -7+ (Fir)g
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Component continuity:

acC,

St v VG = (e )V - OED + (R )V - [OCird TN
Energy:

oT

1 J
-5 TV vl = (W)V - (kvT) T'(‘ﬁ,’—_) [Z0:7:vCiIVP +
+ (JeE,) [Zlatcif JTHY® - vP)
Charge:

1
-V (Ezat?tvci) -+ (Vz,ts,C,yzllT) - ng
Vo= —
Z;G,C,yi?/T

The Reynolds, Schmidt, Froude and Prandtl numbers follow standard nocmenclature
(see Definitions in Section 7)*°-3°, and the remaining dimensionless parameters are
defined as

Ey= 7’c¢o/ RT,
and
Je = DoCoyePolkoTo

E, represents the ratio of mass transport due to the externally applied electric force
to mass transport due to ordinary diffusion, and Je represents the ratio of thermal
energy dissipated due to the externally applied electric force to thermal energy
traasport by conduction.

5.2. Heterogeneous electrophoretic systems

For electrophoretic systems with supporting media and a stagnant electrolytic
solution (i.e., v = 0), such as polyacrylamide gel electrophoresis with continuous or
discontinuous buffer regionms, the corresponding set of dimensionless transport
relationships has the following form:

Component continuity:

ac,
ot

=V OwvC) + Er v - [3:Coy/ TIVD]

Energy:

T — Lev - (vl + LelelEdyyCiIv® + LeTeEAZA CoiTIR® - vO)
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5.3. Electrophoretic systems with natural convection -

. Homogesneous electrophoretic systems with no externally applied pressure
gradients develop natural convection currents which, when included in the analysis
of the electrophoretic transport relationships, give rise to the following:

Overall continuity:

vvyr=20

Motion:
av
—t—{—(v- VWwW=—vy-7v—GrgT

Component continuity:

aC: 1 E
S5+ v Vo= (5)v - GO + (SENIBCrd TIVE]
Energy:

oT

A v T = (5)v - CvD + (E)ZsvClv +

+ (52 128.CoiTI w0 - vO)

It may be observed that, because of the electroneutrality condition, the charge
conservation eqn. 11 is explicitly invariant to changes in fluid velocity distributions.
Nevertheless, implicitly, it remains affected by such velocity disiributions through
the concentration gradients of the mixture components.

6. CONCLUSION

As large-scale preparative apparatus, clectrophoretic systems have been
severely limited by Joule heating and the difficulties encountered in its exchange
with the system’s surroundings. Rapid and highly demarcated fractionaticns are
sought with minimal energy utilization. This, however, is necessarily accompanied by
large localized voltage gradients and electrical current densities that enhance electrical
energy dissipation, natural convection currents and broadening of comncentration
distributions. Operating parameters for optimal separations must then be obtained
through an integrated analysis of the prevailing transport processes within the
electrophoretic cell. To this end, mass, momentum, energy and charge conservation
relationships (egns. 3, 5, 11, 12 and 15) have been derived for electrophoretic
fractionation systems. Fundamental simplifying assumptions include negligible mass
transport due to thermal and pressure gradient effects, negligible thermal energy
transport due to concentration gradients, molecular diffusion and thermal radiation,
infinitely dilute macromolecular mixtures with no interactions among their constit-
uents (i.e., pseudo-binary solutions), ionic species considered as point charges and
macromolecular species taken as non-conducting charged particles each surrounded
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by a characteristic electrical double layer, and elecirically neutral eclectrolytic
mixtures.

In view of the high coupling and complexity of the derived conservation
relationships, their complete solutions are seldom realized. Consequently, dimen-
sional analysis was utilized to arrive at dimensionless parameters that can now be
used to simplify such differential relationships, and to establish empirical correlations
for analysis and design purposes. The resulting dimensionless parameters are E, (the
ratio of mass transport due to the applied electrical force to mass transport due to
ordinary diffusion) and Je (the ratio of thermal energy dissipated due to the applied
electrical force to thermal energy transport by conduction).

7. SYMBOLS
a particle radius
B magnetic field
C local concentration, total concentration
C,,C, specific heat

binary diffusion coefficient

multi-component diffusion coefficients

substantial time derivative

voltage gradient

ratio of mass transport due to externally applied electrical force to mass
transport due to ordipary diffusion

external force

appiied external force per unit mass of component

Froude number

zeta potential relationship describing particle—electrical double layer forces

gravitational force

partial molal Gibbs free energy

Grashof number

uncharged solution constituent

hydrogen ion

unit tensor

current density

mass flux with respect to fluid mass average velocity

mass flux with respect to fluid molal average velocity

ratio of thermal energy dissipated due to externally applied electrical force
to thermal energy transport by conduction

thermal conductivity

Lewis number

molecular weight

mass flux with respect te stationary coordinate system

Avogadro’s number

protein molecule; macromolecular ion

P(HA), protein—uncharged solution constituent complex

PH; macromolecular ion

VZZRRT ks*m«:ﬁgm\:ﬁw gl gp ©
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Greek symbols
a temperatue coefficient
¥ charge per gram-mole; charge per gram-ion
V:l one-dimensional Laplacian operator in e, direction
é dimensionless binary diffusivity coeflicients
£ dielectric constant
Iy zeta potential
Az ratio of radius of curvature to diffuse double layer thickness
A"t thickness of diffuse double layer
73 mobility; fluid viscosity
v electrophoretic mobility
o density
o2 electrical conductivity at a nominal temperatuse 7,
T stress tensor
D electrical potential
171 electric flux
Subscripts

TO™M

Prandtl number

static pressure

thermal energy source; particle charge
energy flux

gas law constant

reaction rate

Reynolds number

Schmidt number

temperature

time

internal energy

partial molal internal energy
Nernst—Einstein mobility

partial moial volume

velocity

bulk velocity in x-direction

molar fraction; spatial coordinate
spatial coordinate

ionic charge; spatial coordinate

electrolytic solution
solution constituent
characteristic quantities
cell wall

33
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Superscripts
() concentration
d thermal diffusion
") radiation
) temperature, thermal
(F) external force

(») pressure

Definitions

convective forces
viscous forces
convective forces

gravitational forces

Reynolds number =

Froude number =

__ {buoyancy forces) {convective forces)
Grashof number = (viscous forces)?

e __ convective energy transport
(Reynolds number) (Prandtl number) = conductive encrey fransport

convective mass transport
ordinary diffusion mass transport
conductive encrgy transport
ordinary diffusion mass transport

(Reynolds number) (Schmidt number) =

Lewis number =

8. SUMMARY

Electrophoretic fractionation systems have been used extensively in chemistry,
biology, biochemistry and medicine. However, such applications have been confined
to analytical-scale systems, with limited extension to preparative or large-scale
enginecring systems. The major difficulties encountered in the analysis and design of
such systems are pointed out, and mass, momentum, energy and charge conservation
relationships are derived that incorporate the effects of the composition of the
elactrolytic solution on the microscopic structure of the electrical double layer and
the associated macroscopic concentration, velocity, temperature and electrical
potential distributions. Two dimensionless parameters are found in the amalysis of
clectrophoretic fractionation systems: the ratio of mass transport due to the applied
electrical force to mass transport due to ordinary diffusion, and the ratio of thermal
energy dissipated due to the applied electrical force to thermal energy transport by
conduction. These, together with other normally occurring dimensionless transport
parameters such as the Reynolds, Schmidt, Froude, Prandtl, Nusselt and Lewis
numbers, are essential in establishing theoretical and empirical correlations for
analysis and design purposes.
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